Distributed Auction System
This tutorial demonstrates building a robust, secure distributed auction system using the Ceylon multi-agent framework. The system implements a scalable architecture with an auctioneer agent orchestrating the auction process and multiple authenticated bidder agents participating in real-time auctions.
System Overview
The auction system implements: - Multiple concurrent auction support with isolation - Secure bid validation and authentication - Configurable auction rules (reserve price, minimum increment) - Fault-tolerant communication with automatic recovery - Scalable bid processing with rate limiting
Core Components
Data Models
@dataclass
class Item:
name: str
starting_price: float
reserve_price: Optional[float] = None
min_increment: float = 1.0
auction_duration: timedelta = timedelta(minutes=5)
@dataclass
class Bid:
bidder: str
amount: float
timestamp: float
signature: bytes # For bid verification
auction_id: str
@dataclass
class AuctionStart:
item: Item
auction_id: str
start_time: float
@dataclass
class AuctionResult:
winner: str
winning_bid: float
auction_id: str
end_time: float
@dataclass
class AuctionEnd:
auction_id: str
reason: str # "completed", "reserve_not_met", "cancelled"
Auctioneer Agent
The auctioneer manages multiple concurrent auctions:
class Auctioneer(BaseAgent):
def __init__(self, name="auctioneer", port=8888):
super().__init__(
name=name,
mode=PeerMode.ADMIN,
role="auctioneer",
port=port
)
self.active_auctions: Dict[str, AuctionState] = {}
self.bid_queue = asyncio.Queue(maxsize=1000)
self.bidder_registry: Dict[str, BidderInfo] = {}
Key features: - Asynchronous bid processing with rate limiting - Automatic auction timeouts and cleanup - Bid verification and signature validation - Bidder reputation tracking - Comprehensive error handling and recovery
Bidder Agent
Each bidder implements secure auction participation:
class Bidder(BaseAgent):
def __init__(self, name: str, budget: float, strategy: BiddingStrategy):
super().__init__(
name=name,
mode=PeerMode.CLIENT,
role="bidder"
)
self.budget = budget
self.strategy = strategy
self.active_bids: Dict[str, float] = {}
self.key_pair = generate_keypair() # For bid signing
Key features: - Configurable bidding strategies - Bid signing and verification - Budget enforcement and tracking - Automatic bid updates on price changes - Graceful handling of connection issues
Advanced Bidding Strategies
class SmartBidder(Bidder):
async def calculate_bid(self, item: Item, auction_state: AuctionState) -> float:
market_value = await self.estimate_market_value(item)
competition = len(auction_state.active_bidders)
time_remaining = auction_state.end_time - time.time()
if time_remaining < 60: # Last minute strategy
return min(self.budget, market_value * 1.1)
return min(
self.budget,
market_value * (0.8 + (0.4 * (1 - time_remaining/auction_state.duration)))
)
Error Handling and Recovery
class AuctionManager:
async def handle_disconnection(self, bidder_id: str):
affected_auctions = self.find_affected_auctions(bidder_id)
for auction in affected_auctions:
if auction.status == "pending_payment":
await self.revert_auction(auction.id)
else:
await self.pause_auction(auction.id)
await self.notify_participants(auction.id, "auction_paused")
async def recover_auction_state(self, auction_id: str):
state = await self.load_backup_state(auction_id)
await self.verify_bid_sequence(state.bids)
await self.resume_auction(state)
Running the System
-
Initialize auction system with configuration:
config = AuctionConfig( min_bidders=3, bid_timeout=30, max_concurrent_auctions=10, bid_verification_required=True ) auctioneer = Auctioneer(config)
-
Create authenticated bidders:
bidders = [ SmartBidder("Alice", 1500.0, MarketValueStrategy()), SmartBidder("Bob", 1200.0, AggressiveStrategy()), SmartBidder("Charlie", 2000.0, ConservativeStrategy()) ]
-
Start the system with monitoring:
async with AuctionMonitor() as monitor: await auctioneer.start_agent(b"", bidders) await monitor.track_metrics()
System Architecture
sequenceDiagram
participant A as Auctioneer
participant B1 as Bidder1
participant B2 as Bidder2
participant B3 as Bidder3
participant M as Monitor
Note over A,M: Initialization Phase
A->>M: Register System
B1->>A: Connect(auth_token)
A->>B1: Connection Confirmed
B2->>A: Connect(auth_token)
A->>B2: Connection Confirmed
B3->>A: Connect(auth_token)
A->>B3: Connection Confirmed
Note over A,M: Auction Start
A->>M: Start Monitoring
A->>B1: AuctionStart(item, rules)
A->>B2: AuctionStart(item, rules)
A->>B3: AuctionStart(item, rules)
Note over A,M: Active Bidding
B1-->>A: SignedBid(amount, timestamp)
A-->>M: Log Bid
A->>B1: BidAcknowledged
B2-->>A: SignedBid(amount, timestamp)
A-->>M: Log Bid
A->>B2: BidAcknowledged
B3-->>A: SignedBid(amount, timestamp)
A-->>M: Log Bid
A->>B3: BidAcknowledged
Note over A,M: Auction Close
A->>M: Finalize Metrics
A->>B1: AuctionResult(winner, amount)
A->>B2: AuctionResult(winner, amount)
A->>B3: AuctionResult(winner, amount)
A->>M: Store Results
Performance Monitoring
The system includes built-in monitoring for: - Bid processing latency - Message queue depths - Bidder connection health - Auction completion rates - System resource utilization
Security Considerations
-
Bid Authentication - All bids are cryptographically signed - Timestamps prevent replay attacks - Rate limiting prevents DoS attacks
-
Data Integrity - Auction state is regularly checkpointed - Bid history is immutable and verifiable - Transaction logs for audit trails
-
Access Control - Bidder authentication required - Role-based permissions - Resource usage quotas
Scalability Features
-
Horizontal Scaling - Multiple auctioneer instances - Load-balanced bidder connections - Distributed state management
-
Performance Optimization - Asynchronous bid processing - Efficient state management - Connection pooling - Message batching